ORGANIC LETTERS

2000 Vol. 2, No. 18 2805–2807

Absolute Stereochemistry of Amphidinolides G and H

Jun'ichi Kobayashi,*,† Kazutaka Shimbo,† Masaaki Sato,† Motoo Shiro,‡ and Masashi Tsuda†

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and X-ray Research Laboratory, Rigaku Corporation, Akishima, Tokyo 196-8666, Japan

jkobay@pharm.hokudai.ac.jp

Received June 17, 2000

ABSTRACT

Absolute stereochemistry of amphidinolides G (1) and H (2), potent cytotoxic 27- and 26-membered macrolides, respectively, isolated from a marine dinoflagellate *Amphidinium* sp., was determined by X-ray diffraction analysis, synthesis of a degradation product (3) of 2, and interconversion between 1 and 2.

Amphidinolides are a series of unique cytotoxic macrolides obtained from marine dinoflagellates of the genus *Amphidinium*, which are symbionts of Okinawan marine acoel flatworms *Amphiscolops* spp.¹ Amphidinolides G (1) and H (2), isolated from the marine dinoflagellate *Amphidinium* sp. (Y-25 strain), are potent cytotoxic 27- and 26-membered macrolides, respectively, having unique structural features such as an allyl epoxide or vicinally located one-carbon branches.² The gross structures of 1 and 2 have been elucidated primarily by means of 2D NMR data, whereas the stereochemisty remains unsolved. During our search for bioactive and structurally unique secondary metabolites from

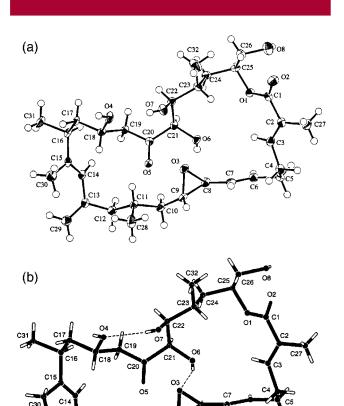
marine dinoflagellates,³ a strain (Y-72) of the genus *Amphidinium* producing relatively large amounts of amphidinolides G (1) and H (2), has been recently separated from the inside cells of the marine acoel flatworm *Amphiscolops* sp. collected off Zanpa, Okinawa.⁴ Here we describe the determination of relative and absolute stereochemistry of amphidinolides G (1) and H (2) on the basis of X-ray diffraction analysis, synthesis of a degradation product (3) of 2, and interconversion between 1 and 2.

The dinoflagellate *Amphidinium* sp. (Y-72 strain) was cultured unialgally at 25 °C for 2 weeks in a seawater medium enriched with 1% Provasoli's ES supplement. The harvested algal cells (50 g, wet weight, from 120 L of culture) were extracted with MeOH/toluene (4:1), and the extracts were partitioned between toluene and water. The toluene extracts were subjected to a silica gel column followed by C_{18} HPLC to afford amphidinolides G (1, 0.046%, wet weight) and H (2, 0.082%) (Scheme 1).

Amphidinolide H (2) was crystallized from hexane/ benzene as colorless needles, mp 131–132 °C. The relative

[†] Hokkaido University.

[‡] Rigaku Corporation.


^{(1) (}a) Ishibashi, M.; Kobayashi, J. Heterocycles **1997**, 44, 543–572. (b) Tsuda, M.; Endo, T.; Kobayashi, J. Tetrahedron **1999**, 55, 14565–14570. (c) Kubota, T.; Tsuda, M.; Kobayashi, J. Tetrahedron Lett. **2000**, 41, 713–716. (d) Tsuda, M.; Endo, T.; Kobayashi, J. J. Org. Chem. **2000**, 65, 1349–1352.

⁽²⁾ Kobayashi, J.; Shigemori, H.; Ishibashi, M.; Yamasu, T.; Hirota, H.; Sasaki, T. *J. Org. Chem.* **1991**, *56*, 5221–5224.

^{(3) (}a) Kobayashi, J.; Kubota, T.; Takahashi, M.; Ishibashi, M.; Tsuda, M.; Naoki, H. *J. Org. Chem.* **1999**, *64*, 1478–1482. (b) Kubota, T.; Tsuda, M.; Takahashi, M.; Ishibashi, M.; Naoki, N.; Kobayashi, J. *J. Chem. Soc.*, *Perkin Trans. 1* **1999**, 3483–3488.

⁽⁴⁾ Sato, M.; Shimbo, K.; Tsuda, M.; Kobayashi, J. *Tetrahedron Lett.* **2000**, *41*, 503–506.

stereochemistry of nine chiral centers in **2** was obtained from a single-crystal X-ray diffraction analysis, and the perspective view of the final X-ray model is shown in Figure 1.

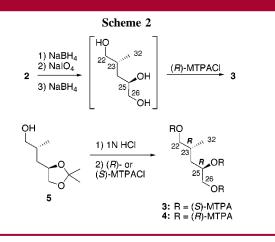
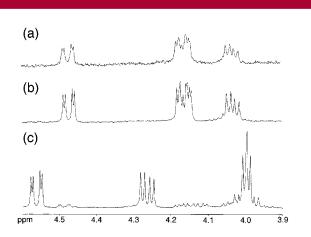


Figure 1. Molecular structures [(a) ORTEP drawing and (b) wire frame model] of amphidinolide H (2) obtained by X-ray analysis.


Amphidinolide H (2) was revealed to have a rectangular shape, which was bridged in the middle by an intramolecular

hydrogen bond (1.99 Å) between O(O6)H and epoxide O(O3). The bond length of one C-O bond [O3-C8; 1.470-(3) Å] at the epoxide ring was longer than that of the other C-O bond [O3-C9; 1.448(3) Å], probably because of the effect of the intramolecular hydrogen bond. By another intramolecular hydrogen bond (1.92 Å) between O(O7)H-22 and O(O4)-18, an envelope-boat-shaped eight-membered ring was constructed at the C18-C19-C20 -C21-C22-O7-O(O7)H-O4 portion. In this crystalline structure the *S-cis* diene portion at C15-C14-C13-C29 was revealed to be twisted [torsion angle, -35.6(5)°].

To determine the absolute stereochemistry of amphidinolide H (2), 2 was treated with NaBH₄ followed by NaIO₄ oxidation, NaBH₄ reduction, esterification with (R)-(-)- α -methoxy- α -(trifluoromethyl)phenylacetyl chlolide (MT-PACl), and separation using C₁₈ HPLC to afford the tris-(S)-MTPA ester (3) of the C22–C26 segment (Scheme 2).

On the other hand, both tris-(S)- and (R)-MTPA esters (3 and 4) of the C22-C26 segment were prepared from the (2R,4R)- acetonide (5), which was synthesized from methyl

Figure 2. ¹H NMR spectra (partial) of (a) tris-(*S*)-MTPA ester (3) derived from amphidinolide H (2), (b) tris-(*S*)-MTPA ester (3) of the synthetic C22–C26 segment, and (c) tris-(*R*)-MTPA ester (4) of the synthetic C22–C26 segment.

2806 Org. Lett., Vol. 2, No. 18, 2000

(2*S*)-3-hydroxy-2-methylpropionate reported previously.⁵ In the ¹H NMR spectra (Figure 2 and Table 1) of tris-(*S*)- and

Table 1. Selected ¹H NMR Data of Tris-(*S*)- and (*R*)-MTPA Esters (**3** and **4**, respectively) of the Synthetic C22–C26 Segment

position	3	4
H ₂ -22	4.16, 4.03	4.00^{a}
H-23	1.36	1.28
H_2-24	1.77^{a}	1.70, 1.60
H-25	5.37	5.35
H_2-26	4.47, 4.17	4.56, 4.26
H ₃ -32	0.92^b	0.86^{b}

(*R*)-MTPA esters (**3** and **4**) of the synthetic segment, significant differences were observed for signals due to methylene protons at C22 (**3**, $\delta_{\rm H}$ 4.16 and 4.03; **4**, $\delta_{\rm H}$ 4.00, 2H). ¹H NMR data of the tris-(*S*)-MTPA ester (**3**) derived from the natural product (**2**) were identical with those of the synthetic tris-(*S*)-MTPA ester (**3**), indicating 23*R*- and 25*R*-configurations. Therefore, the absolute configurations of amphidinolide H (**2**) were concluded to be 8*S*, 9*S*, 11*R*, 16*S*, 18*S*, 21*R*, 22*S*, 23*R*, and 25*R*.

The absolute stereochemistry of amphidinolide G (1) was determined by interconversion between 1 and amphidinolide H (2). Treatment of 2 with K_2CO_3 in EtOH at 4 °C for 18 h yielded a 1:1 mixture of 1 and 2. All spectral data of amphidinolide G (1) isolated from this mixture were identical

with those of natural product (1). On the other hand, treatment of amphidinolide G (1) with K_2CO_3 also gave a 1:1 mixture of 1 and 2. Thus the absolute configurations of amphidinolide G (1) were the same as those of amphidinolide H (2).

The absolute stereochemistry and the X-ray structure of amphidinolide H (2) correspond well to those of amphidinolide B,⁶ which has been isolated from the Y-5 strain of *Amphidinium* sp. by our group⁷ and also from a free-swimming *Amphidinium* sp. by Shimizu *et al.*⁸ Both amphidinolides B and H (1) showed potent cytotoxicity (IC₅₀ 0.0045–0.00014 μ g/mL) against cultured tumor cells,^{2,7a} which may result from not only the characteristic functionalities such as the allyl epoxide and the *S-cis*-diene but also the unique 3D structures

Acknowledgment. We thank Prof. T. Yamasu, University of the Ryukyus, and Prof. M. Ishibashi, Chiba University, for help with dinoflagellate collection. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

Supporting Information Available: X-ray data of **2**, procedures of degradation, synthesis, and derivatization, and spectral data of **3** and **4**. This material is available via the Internet at http://pubs.acs.org.

OL006223B

Org. Lett., Vol. 2, No. 18, 2000

⁽⁵⁾ Tsuda, M.; Hatakeyama, A.; Kobayashi, J. J. Chem. Soc., Perkin Trans. 1 1998, 149–156.

⁽⁶⁾ Ishibashi, M.; Ishiyama, H.; Kobayashi, J. Tetrahedron Lett. 1994, 35, 8241–8242.

^{(7) (}a) Ishibashi, M.; Ohizumi, Y.; Hamashima, M.; Nakamura, H.; Hirata, Y.; Sasaki, T.; Kobayashi, J. *J. Chem. Soc., Chem. Commun.* **1987**, 1127–1129. (b) Kobayashi, J.; Ishibashi, M.; Nakamura, H.; Ohizumi, Y.; Yamasu, T.; Hirata, Y.; Sasaki, T.; Ohta, T.; Nozoe, S. *J. Nat. Prod.* **1989**, 52, 1036–1041.

⁽⁸⁾ Bauer, I.; Maranda, L.; Shimizu, Y.; Peterson, R. W.; Cornell, L.; Steiner, J. R.; Clardy, J. J. Am. Chem. Soc. 1994, 116, 2657–2658.